Search results for "Mycorrhizal fungi"

showing 10 items of 79 documents

The interplay betweenPinus sylvestris, its root hemiparasite,Melampyrum pratense, and ectomycorrhizal fungi: Influences on plant growth and reproduct…

2000

Despite the extensive literature on mutual interactions between plants and mycorrhizal fungi, and host plants and parasitic plants, little is known about the outcomes of interactions when the three...

0106 biological sciences010506 paleontologyBiomass (ecology)Ecologybiologymedia_common.quotation_subjectfungifood and beveragesbiology.organism_classification010603 evolutionary biology01 natural sciencesEctosymbiosisEctomycorrhizaAgronomyMycorrhizal fungiBotanyMelampyrum pratenseReproductionPlant nutritionEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesmedia_commonWoody plantÉcoscience
researchProduct

Single-Spore Extraction for Genetic Analyses of Arbuscular Mycorrhizal Fungi

2020

International audience; Biomass of arbuscular mycorrhizal fungi (AMF, Glomeromycota) is often only available in small quantities as these fungi are obligate biotrophs and many species are difficult to cultivate under controlled conditions. Here, I describe a simple, efficient approach to produce crude extracts from single or a small number of spores that can be used for genotyping AMF.

0106 biological sciences0301 basic medicineGenotypingbiologyObligatefungiExtraction (chemistry)Single-spore extractionBiomassArbuscular mycorrhizal fungibiology.organism_classification01 natural sciencesSporeGlomeromycota03 medical and health sciences030104 developmental biology[SDE]Environmental SciencesBotanyGlomeromycota010606 plant biology & botany
researchProduct

Glomeromycotina: what is a species and why should we care?

2018

International audience; A workshop at the recent International Conference on Mycorrhiza was focused on species recognition in Glomeromycotina and parts of their basic biology that define species. The workshop was motivated by the paradigm-shifting evidence derived from genomic data for sex and for the lack of heterokaryosis, and by published exchanges in Science that were based on different species concepts and have led to differing views of dispersal and endemism in these fungi. Although a lively discussion ensued, there was general agreement that species recognition in the group is in need of more attention, and that many basic assumptions about the biology of these important fungi includ…

0106 biological sciences0301 basic medicinePhysiologyGenomic data[SDV]Life Sciences [q-bio]educationarbuscular mycorrhizal fungiclonalityPlant ScienceArbuscular mycorrhizal fungi01 natural sciences03 medical and health sciencesSpecies Specificityspecies recognitionSimilarity (psychology)Clonal reproductionsex[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyEndemismGlomeromycotaPhylogenyheterokaryosisGlomeromycotina030104 developmental biologyGeographyEvolutionary biology[SDE]Environmental SciencesBiological dispersal010606 plant biology & botany
researchProduct

Characterization and purification of a bacterial chlorogenic acid esterase detected during the extraction of chlorogenic acid from arbuscular mycorrh…

2016

International audience; A Gram-negative bacterium able to grow using chlorogenic acid (5-caffeoylquinic acid) as sole carbon source has been isolated from the roots of tomato plants inoculated with the arbuscular mycorrhizal fungus Rhizophagus irregularis. An intracellular esterase exhibiting very high affinity (K-m = 2 mu M) for chlorogenic acid has been extracted and purified by FPLC from the chlorogenate-grown cultures of this bacterium. The molecular mass of the purified esterase determined by SDS-PAGE was 61 kDa and its isoelectric point determined by chromatofocusing was 7.75. The esterase hydrolysed chlorogenic acid analogues (caffeoylshikimate, and the 4- and 3-caffeoylquinic acid i…

0106 biological sciences0301 basic medicineRhizophagus irregularisCoumaric AcidsPhysiologyRoot-associated bacteria[SDV]Life Sciences [q-bio]Arbuscular mycorrhizal fungiPlant ScienceBiologyCoumaric acidRoot exudates01 natural sciencesEsterasePlant RootsProtocatechuic acidSubstrate SpecificityFerulic acid03 medical and health scienceschemistry.chemical_compoundHydrolysisChlorogenic acidBacterial ProteinsSolanum lycopersicumMycorrhizaeGeneticsMethyl caffeate[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyBacteriaEthanolMethanolChlorogenic acidbiology.organism_classification6. Clean waterChlorogenase030104 developmental biologychemistryBiochemistry[SDE]Environmental SciencesCarboxylic Ester Hydrolases010606 plant biology & botany
researchProduct

Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi

2021

Made available in DSpace on 2021-06-25T11:52:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2021-03-04 European Regional Development Fund (Centre of Excellence EcolChange) University of Tartu (Estonian Research Council ) Moscow State University Natural Sciences and Engineering Research Council of Canada Discovery Grant Russian Science Foundation Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Swedish Research Council (Vetenskapsradet) The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 s…

0106 biological sciences0301 basic medicinearbuscular mycorrhizal fungi ecological niche molecular taxa niche optimum niche width pH phylogenetic correlation temperature Ecosystem Fungi Hydrogen-Ion Concentration Phylogeny Soil Soil Microbiology Temperature MycorrhizaePhylogéniePhysiologyPlant Science01 natural sciencesSoilhttp://aims.fao.org/aos/agrovoc/c_5963http://aims.fao.org/aos/agrovoc/c_33550MycorrhizaePhylogenySoil MicrobiologyAbiotic componentbiologyEcologypHTemperatureHydrogen-Ion ConcentrationPhytoécologieniche widthTempérature du solpH de la rhizosphèreF40 - Écologie végétaleAcaulosporaceaeNichearbuscular mycorrhizal fungi03 medical and health scienceshttp://aims.fao.org/aos/agrovoc/c_1415699873241Glomeraceaeecological nichehttp://aims.fao.org/aos/agrovoc/c_13325Relative species abundanceChampignon du solArbuscular mycorrhiza [EN]EcosystemEcological nichehttp://aims.fao.org/aos/agrovoc/c_5b384c25phylogenetic correlationFungiP34 - Biologie du solmolecular taxatemperatureAquatic Ecologyfacteurs abiotiques15. Life on landbiology.organism_classificationniche optimum030104 developmental biology13. Climate actionBiological dispersalhttp://aims.fao.org/aos/agrovoc/c_7197http://aims.fao.org/aos/agrovoc/c_36313010606 plant biology & botanyGigasporaceae
researchProduct

Root architectural traits of rooted cuttings of two fig cultivars: Treatments with arbuscular mycorrhizal fungi formulation

2021

Abstract Many fruit tree species develop symbioses relationships with mycorrhizal fungi by which they improve their efficiency in water and nutrient uptake and, in turn, increase their vegetative growth and productivity, particularly under stressful environments. These benefits origin from the effects that mycorrhizal determined on the root architecture, morphology and physiology. Usually, few attentions has been devoted to the tree root structure and function, especially, in fig plants during their growth phase in the nursery. Recently, several root traits or phenes have been reported as fundamental for the root functions such as the root length ratio (plant’s potential for the exploitatio…

0106 biological sciences0301 basic medicinebiologyVegetative reproductionfungiFicusHorticulturebiology.organism_classification01 natural sciencesArbuscular mycorrhizal fungi Fig Image analysis Root architecture Root morphology Rooted cuttingSettore AGR/03 - Arboricoltura Generale E Coltivazioni Arboree03 medical and health sciencesHorticultureCutting030104 developmental biologyNutrientSymbiosisCultivarCaricaFruit tree010606 plant biology & botany
researchProduct

Preparation of Samples for Characterization of Arbuscular Mycorrhizal Fungi

2020

Arbuscular mycorrhizal fungi (AMF) are an important element of the plant microbiome as they establish an endosymbiotic relationship with the roots of most plant species. This association enhances access to nutrients and water for plants, and provides the fungus with plant-derived organic carbon. In this chapter, I describe a range of methods to work with AMF including: soil sampling; isolation of AMF propagules (spores, sporocarps, roots, and mycelium) by a wet sieving and centrifugation in a sucrose solution; trap (from field soil with AMF spores) and one-species pot cultures (from AMF spores divided into morphotypes); staining of mycorrhizae in plant roots; and production of diagnostic sl…

0106 biological sciences0301 basic medicinebiologyfungifood and beveragesFungusbiology.organism_classificationIsolation (microbiology)Arbuscular mycorrhizal fungi01 natural sciencesSpore03 medical and health sciences030104 developmental biologyNutrientPropaguleBotanyWet sievingMycelium010606 plant biology & botany
researchProduct

Genomics of arbuscular mycorrhizal fungi

2004

International audience

0106 biological sciences0303 health sciences[SDV]Life Sciences [q-bio]GenomicsBiologyGENETIQUEBIOLOGIE MOLECULAIREArbuscular mycorrhizal fungi01 natural sciencesGenomeGENOMIQUE[SDV] Life Sciences [q-bio]03 medical and health sciencesSymbiosisMycorrhizal fungiBotanyComputingMilieux_MISCELLANEOUS030304 developmental biology010606 plant biology & botany
researchProduct

Plant defense responses induced by arbuscular mycorrhizal fungi

2002

Plants in their environment daily face many organisms such as fungi, bacteria, mycoplasms, viruses, nematodes, etc. Many of them are potential pathogens; in fact thousands of microorganisms are known to cause plant diseases. Despite this large number of deleterious microorganisms, most of the plants are resistant to their attack since they have developed effective mechanisms to protect themselves.

0106 biological sciences2. Zero hunger0303 health sciences[SDV]Life Sciences [q-bio]MicroorganismfungiDefence mechanismsfood and beverages15. Life on landBiologybiology.organism_classificationArbuscular mycorrhizal fungi01 natural sciences[SDV] Life Sciences [q-bio]03 medical and health sciencesBotanyREPONSE DE LA PLANTEPlant defense against herbivoryComputingMilieux_MISCELLANEOUSBacteria030304 developmental biology010606 plant biology & botany
researchProduct

Arbuscular mycorrhizal fungi and micropropagation of high value crops

2002

Micropropagation has established its position as a way of propagating large numbers of uniform plants. For some plant species that are difficult to propagate by seeds or by conventional cuttings, this technique provides the only possible way of producing high quality plants. Micropropagation is widely used for propagation of high value crops like ornamentals, fruits, vegetables, plantation crops and spices (Vestberg and Estaun 1994). The micropropagation industry was growing fast in Europe up to 1992 (O’Riordain 1992) but after that the micropropagation industry seems to have stabilized its position although a slight increase in production of microplants was still recorded for the period 19…

0106 biological sciences2. Zero hunger[SDV]Life Sciences [q-bio]04 agricultural and veterinary sciences15. Life on landBiologyArbuscular mycorrhizal fungi01 natural sciences[SDV] Life Sciences [q-bio]HorticultureCuttingPrunusMicropropagationAgronomyOrnamental plant040103 agronomy & agriculturePlant species0401 agriculture forestry and fisheriesComputingMilieux_MISCELLANEOUS010606 plant biology & botany
researchProduct